Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 718
Filtrar
1.
Front Public Health ; 12: 1361274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38651121

RESUMO

Climate change is accompanied by changes in the exposome, including increased heat, ground-level ozone, and other air pollutants, infectious agents, pollens, and psychosocial stress. These exposures alter the internal component of the exposome and account for some of the health effects of climate change. The adverse outcome pathways describe biological events leading to an unfavorable health outcome. In this perspective study, I propose to use this toxicological framework to better describe the biological steps linking a stressor associated with climate change to an adverse outcome. Such a framework also allows for better identification of possible interactions between stressors related to climate change and others, such as chemical pollution. More generally, I call for the incorporation of climate change as part of the exposome and for improved identification of the biological pathways involved in its health effects.


Assuntos
Mudança Climática , Exposição Ambiental , Expossoma , Humanos , Exposição Ambiental/efeitos adversos , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Ozônio/toxicidade
2.
Oncol Res ; 32(4): 785-797, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560574

RESUMO

Cytochromes P450 (CYPs) play a prominent role in catalyzing phase I xenobiotic biotransformation and account for about 75% of the total metabolism of commercially available drugs, including chemotherapeutics. The gene expression and enzyme activity of CYPs are variable between individuals, which subsequently leads to different patterns of susceptibility to carcinogenesis by genotoxic xenobiotics, as well as differences in the efficacy and toxicity of clinically used drugs. This research aimed to examine the presence of the CYP2B6*9 polymorphism and its possible association with the incidence of B-CLL in Egyptian patients, as well as the clinical outcome after receiving cyclophosphamide chemotherapy. DNA was isolated from whole blood samples of 100 de novo B-CLL cases and also from 100 sex- and age-matched healthy individuals. The presence of the CYP2B6*9 (G516T) polymorphism was examined by PCR-based allele specific amplification (ASA). Patients were further indicated for receiving chemotherapy, and then they were followed up. The CYP2B6*9 variant indicated a statistically significant higher risk of B-CLL under different genetic models, comprising allelic (T-allele vs. G-allele, OR = 4.8, p < 0.001) and dominant (GT + TT vs. GG, OR = 5.4, p < 0.001) models. Following cyclophosphamide chemotherapy, we found that the patients with variant genotypes (GT + TT) were less likely to achieve remission compared to those with the wild-type genotype (GG), with a response percentage of (37.5% vs. 83%, respectively). In conclusion, our findings showed that the CYP2B6*9 (G516T) polymorphism is associated with B-CLL susceptibility among Egyptian patients. This variant greatly affected the clinical outcome and can serve as a good therapeutic marker in predicting response to cyclophosphamide treatment.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Citocromo P-450 CYP2B6/genética , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/epidemiologia , Leucemia Linfocítica Crônica de Células B/genética , Incidência , Egito/epidemiologia , Sistema Enzimático do Citocromo P-450/genética , Genótipo , Ciclofosfamida/efeitos adversos
3.
ISME Commun ; 4(1): ycae035, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38562261

RESUMO

The anaerobic cultivation of fecal microbiota is a promising approach to investigating how gut microbial communities respond to specific intestinal conditions and perturbations. Here, we describe a flexible protocol using 96-deepwell plates to cultivate stool-derived gut microbiota. Our protocol aims to address gaps in high-throughput culturing in an anaerobic chamber. We characterized the influence of the gas phase on the medium chemistry and microbial physiology and introduced a modular medium preparation process to enable the testing of several conditions simultaneously. Furthermore, we identified a medium formulation that maximized the compositional similarity of ex vivo cultures and donor microbiota while limiting the bloom of Enterobacteriaceae. Lastly, we validated the protocol by demonstrating that cultivated fecal microbiota responded similarly to dietary fibers (resistant dextrin, soluble starch) and drugs (ciprofloxacin, 5-fluorouracil) as reported in vivo. This high-throughput cultivation protocol has the potential to facilitate culture-dependent studies, accelerate the discovery of gut microbiota-diet-drug-host interactions, and pave the way to personalized microbiota-centered interventions.

4.
J Hazard Mater ; 469: 134095, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38521035

RESUMO

Biogenic manganese oxides (BioMnOx) produced by Mn(II)-oxidizing bacteria (MnOB) have garnered considerable attention for their exceptional adsorption and oxidation capabilities. However, previous studies have predominantly focused on the role of BioMnOx, neglecting substantial investigation into MnOB themselves. Meanwhile, whether the xenobiotics could support the growth of MnOB as the sole carbon source remains uncertain. In this study, we isolated a strain termed Pseudomonas sp. AN-1, capable of utilizing phenol as the sole carbon source. The degradation of phenol took precedence over the accumulation of BioMnOx. In the presence of 100 mg L-1 phenol and 100 µM Mn(II), phenol was entirely degraded within 20 h, while Mn(II) was completely oxidized within 30 h. However, at the higher phenol concentration (500 mg L-1), phenol degradation reduced to 32% and Mn(II) oxidation did not appear to occur. TOC determination confirmed the ability of strain AN-1 to mineralize phenol. Based on the genomic and proteomics studies, the Mn(II) oxidation and phenol mineralization mechanism of strain AN-1 was further confirmed. Proteome analysis revealed down-regulation of proteins associated with Mn(II) oxidation, including MnxG and McoA, with increasing phenol concentration. Notably, this study observed for the first time that the expression of Mn(II) oxidation proteins is modulated by the concentration of carbon sources. This work provides new insight into the interaction between xenobiotics and MnOB, thus revealing the complexity of biogeochemical cycles of Mn and C.


Assuntos
Fenol , Pseudomonas , Fenol/metabolismo , Pseudomonas/metabolismo , Xenobióticos/metabolismo , Óxidos/metabolismo , Oxirredução , Compostos de Manganês/metabolismo , Fenóis/metabolismo , Bactérias/metabolismo , Carbono/metabolismo
5.
Chemosphere ; 355: 141782, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548083

RESUMO

While anthropogenic pollution is a major threat to aquatic ecosystem health, our knowledge of the presence of xenobiotics in coastal Dissolved Organic Matter (DOM) is still relatively poor. This is especially true for water bodies in the Global South with limited information gained mostly from targeted studies that rely on comparison with authentic standards. In recent years, non-targeted tandem mass spectrometry has emerged as a powerful tool to collectively detect and identify pollutants and biogenic DOM components in the environment, but this approach has yet to be widely utilized for monitoring ecologically important aquatic systems. In this study we compared the DOM composition of Algoa Bay, Eastern Cape, South Africa, and its two estuaries. The Swartkops Estuary is highly urbanized and severely impacted by anthropogenic pollution, while the Sundays Estuary is impacted by commercial agriculture in its catchment. We employed solid-phase extraction followed by liquid chromatography tandem mass spectrometry to annotate more than 200 pharmaceuticals, pesticides, urban xenobiotics, and natural products based on spectral matching. The identification with authentic standards confirmed the presence of methamphetamine, carbamazepine, sulfamethoxazole, N-acetylsulfamethoxazole, imazapyr, caffeine and hexa(methoxymethyl)melamine, and allowed semi-quantitative estimations for annotated xenobiotics. The Swartkops Estuary DOM composition was strongly impacted by features annotated as urban pollutants including pharmaceuticals such as melamines and antiretrovirals. By contrast, the Sundays Estuary exhibited significant enrichment of molecules annotated as agrochemicals widely used in the citrus farming industry, with predicted concentrations for some of them exceeding predicted no-effect concentrations. This study provides new insight into anthropogenic impact on the Algoa Bay system and demonstrates the utility of non-targeted tandem mass spectrometry as a sensitive tool for assessing the health of ecologically important coastal ecosystems and will serve as a valuable foundation for strategizing long-term monitoring efforts.


Assuntos
Matéria Orgânica Dissolvida , Poluentes Ambientais , Ecossistema , Estuários , Baías , Rios/química , Agricultura , Preparações Farmacêuticas
6.
Life (Basel) ; 14(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38541726

RESUMO

We are exposed to a mixture of environmental man-made and natural xenobiotics. We experience a wide spectrum of environmental exposure in our lifetime, including the effects of xenobiotics on gametogenesis and gametes that undergo fertilization as the starting point of individual development and, moreover, in utero exposure, which can itself cause the first somatic or germline mutation necessary for breast cancer (BC) initiation. Most xenobiotics are metabolized or/and bioaccumulate and biomagnify in our tissues and cells, including breast tissues, so the xenobiotic metabolism plays an important role in BC initiation and progression. Many considerations necessitate a more valuable explanation regarding the molecular mechanisms of action of xenobiotics which act as genotoxic and epigenetic carcinogens. Thus, exposomics and the exposome concept are based on the diversity and range of exposures to physical factors, synthetic chemicals, dietary components, and psychosocial stressors, as well as their associated biologic processes and molecular pathways. Existing evidence for BC risk (BCR) suggests that food-borne chemical carcinogens, air pollution, ionizing radiation, and socioeconomic status are closely related to breast carcinogenesis. The aim of this review was to depict the dynamics and kinetics of several xenobiotics involved in BC development, emphasizing the role of new omics fields related to BC exposomics, such as environmental toxicogenomics, epigenomics and interactomics, metagenomics, nutrigenomics, nutriproteomics, and nutrimiRomics. We are mainly focused on food and nutrition, as well as endocrine-disrupting chemicals (EDCs), involved in BC development. Overall, cell and tissue accumulation and xenobiotic metabolism or biotransformation can lead to modifications in breast tissue composition and breast cell morphology, DNA damage and genomic instability, epimutations, RNA-mediated and extracellular vesicle effects, aberrant blood methylation, stimulation of epithelial-mesenchymal transition (EMT), disruption of cell-cell junctions, reorganization of the actin cytoskeleton, metabolic reprogramming, and overexpression of mesenchymal genes. Moreover, the metabolism of xenobiotics into BC cells impacts almost all known carcinogenic pathways. Conversely, in our food, there are many bioactive compounds with anti-cancer potential, exerting pro-apoptotic roles, inhibiting cell cycle progression and proliferation, migration, invasion, DNA damage, and cell stress conditions. We can conclude that exposomics has a high potential to demonstrate how environmental exposure to xenobiotics acts as a double-edged sword, promoting or suppressing tumorigenesis in BC.

7.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473971

RESUMO

UDP-glycosyltransferases (UGTs) form a large enzyme family that is found in a wide range of organisms. These enzymes are known for accepting a wide variety of substrates, and they derivatize xenobiotics and metabolites for detoxification. However, most UGT homologs have not been well characterized, and their potential for biomedical and environmental applications is underexplored. In this work, we have used a fluorescent assay for screening substrates of a plant UGT homolog by monitoring the formation of UDP. We optimized the assay such that it could be used for high-throughput screening of substrates of the Medicago truncatula UGT enzyme, UGT71G1, and our results show that 34 of the 159 screened compound samples are potential substrates. With an LC-MS/MS method, we confirmed that three of these candidates indeed were glycosylated by UGT71G1, which includes bisphenol A (BPA) and 7-Ethyl-10-hydroxycamptothecin (SN-38); derivatization of these toxic compounds can lead to new environmental and medical applications. This work suggests that UGT homologs may recognize a substrate profile that is much broader than previously anticipated. Additionally, it demonstrates that this screening method provides a new means to study UDP-glycosyltransferases, facilitating the use of these enzymes to tackle a wide range of problems.


Assuntos
Glicosiltransferases , Espectrometria de Massas em Tandem , Glicosiltransferases/metabolismo , Cromatografia Líquida , Plantas/metabolismo , Difosfato de Uridina
8.
mSystems ; 9(3): e0095723, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38426791

RESUMO

Cumulative xenobiotic exposure has an environmental and human health impact which is currently assessed under the One Health approach. Bisphenol A (BPA) exposure and its potential link with childhood obesity that has parallelly increased during the last decades deserve special attention. It stands during prenatal or early life and could trigger comorbidities and non-communicable diseases along life. Accumulation in the nature of synthetic chemicals supports the "environmental obesogen" hypothesis, such as BPA. This estrogen-mimicking xenobiotic has shown endocrine disruptive and obesogenic effects accompanied by gut microbiota misbalance that is not yet well elucidated. This study aimed to investigate specific microbiota taxa isolated and selected by direct BPA exposure and reveal its role on the overall children microbiota community and dynamics, driving toward specific obesity dysbiosis. A total of 333 BPA-resistant isolated species obtained through culturing after several exposure conditions were evaluated for their role and interplay with the global microbial community. The selected BPA-cultured taxa biomarkers showed a significant impact on alpha diversity. Specifically, Clostridium and Romboutsia were positively associated promoting the richness of microbiota communities, while Intestinibacter, Escherichia-Shigella, Bifidobacterium, and Lactobacillus were negatively associated. Microbial community dynamics and networks analyses showed differences according to the study groups. The normal-weight children group exhibited a more enriched, structured, and connected taxa network compared to overweight and obese groups, which could represent a more resilient community to xenobiotic substances. In this sense, subnetwork analysis generated with the BPA-cultured genera showed a correlation between taxa connectivity and more diverse potential enzymatic BPA degradation capacities.IMPORTANCEOur findings indicate how gut microbiota taxa with the capacity to grow in BPA were differentially represented within differential body mass index children study groups and how these taxa affected the overall dynamics toward patterns of diversity generally recognized in dysbiosis. Community network and subnetwork analyses corroborated the better connectedness and stability profiles for normal-weight group compared to the overweight and obese groups.


Assuntos
Compostos Benzidrílicos , Microbiota , Obesidade Pediátrica , Fenóis , Feminino , Gravidez , Humanos , Criança , Sobrepeso , Obesidade Pediátrica/epidemiologia , Disbiose/induzido quimicamente , Xenobióticos , Clostridiaceae
9.
J Fungi (Basel) ; 10(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535176

RESUMO

Industrial development has enhanced the release into the environment of large quantities of chemical compounds with high toxicity and limited prospects of degradation. The pollution of soil and water with xenobiotic chemicals has become a major ecological issue; therefore, innovative treatment technologies need to be explored. Fungal bioremediation is a promising technology exploiting their metabolic potential to remove or lower the concentrations of xenobiotics. In particular, white rot fungi (WRF) are unique microorganisms that show high capacities to degrade a wide range of toxic xenobiotic compounds such as synthetic dyes, chlorophenols, polychlorinated biphenyls, organophosphate pesticides, explosives and polycyclic aromatic hydrocarbons (PAHs). In this review, we address the main classes of enzymes involved in the fungal degradation of organic pollutants, the main mechanisms used by fungi to degrade these chemicals and the suitability of fungal biomass or extracellular enzymes for bioremediation. We also exemplify the role of several fungi in degrading pollutants such as synthetic dyes, PAHs and emerging pollutants such as pharmaceuticals and perfluoroalkyl/polyfluoroalkyl substances (PFASs). Finally, we discuss the existing current limitations of using WRF for the bioremediation of polluted environments and future strategies to improve biodegradation processes.

10.
J Xenobiot ; 14(1): 350-367, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38535497

RESUMO

BACKGROUND: We sought to replicate our 2015 findings linking chemical intolerance in parents with the risk of their children developing autism and/or ADHD. Drawing upon our 2021 discovery of a strong association between chemical intolerance and mast cells, we propose an explanation for this link. METHODS: In a population-based survey of U.S. adults, we used the internationally validated Quick Environmental Exposure and Sensitivity Inventory (QEESI) to assess symptom severity and chemical intolerance. Parents were asked how many of their biological children had been diagnosed with autism and/or ADHD. RESULTS: Parents with chemical intolerance scores in the top versus bottom tenth percentile had 5.7 times the risk of reporting a child with autism and 2.1 times for ADHD. CONCLUSIONS: High chemical intolerance scores among parents of children with autism, coupled with our 2021 discovery of mast cell activation as a plausible biomechanism for chemical intolerance, suggest that (1) the QEESI can identify individuals at increased risk, (2) environmental counseling may reduce personal exposures and risk, and (3) the global rise in autism and ADHD may be due to fossil-fuel-derived and biogenic toxicants epigenetically "turning on" or "turning off" critical mast cell genes that can be transmitted transgenerationally. It is important to note that this study was observational in nature; as such, further research is needed using controlled trials to confirm causality and explore the proposed mechanism.

11.
J Xenobiot ; 14(1): 416-451, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535501

RESUMO

Biochar (BC), also referred to as "black gold", is a carbon heterogeneous material rich in aromatic systems and minerals, preparable by the thermal decomposition of vegetable and animal biomasses in controlled conditions and with clean technology. Due to its adsorption ability and presence of persistent free radicals (PFRs), BC has demonstrated, among other uses, great potential in the removal of environmental organic and inorganic xenobiotics. Bamboo is an evergreen perennial flowering plant characterized by a short five-year growth period, fast harvesting, and large production in many tropical and subtropical countries worldwide, thus representing an attractive, low-cost, eco-friendly, and renewable bioresource for producing BC. Due to their large surface area and increased porosity, the pyrolyzed derivatives of bamboo, including bamboo biochar (BBC) or activated BBC (ABBC), are considered great bio-adsorbent materials for removing heavy metals, as well as organic and inorganic contaminants from wastewater and soil, thus improving plant growth and production yield. Nowadays, the increasing technological applications of BBC and ABBC also include their employment as energy sources, to catalyze chemical reactions, to develop thermoelectrical devices, as 3D solar vapor-generation devices for water desalination, and as efficient photothermal-conversion devices. Anyway, although it has great potential as an alternative biomass to wood to produce BC, thus paving the way for new bio- and circular economy solutions, the study of bamboo-derived biomasses is still in its infancy. In this context, the main scope of this review was to support an increasing production of BBC and ABBC and to stimulate further studies about their possible applications, thus enlarging the current knowledge about these materials and allowing their more rational, safer, and optimized application. To this end, after having provided background concerning BC, its production methods, and its main applications, we have reviewed and discussed the main studies on BBC and ABBC and their applications reported in recent years.

12.
J Hazard Mater ; 467: 133737, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38359764

RESUMO

This is the first study determining the effects of bath exposure to fulvic acid, a humic substance, on the skin mucosal immunity of rainbow trout (Oncorhynchus mykiss). Humic substances have recently been gaining attention for their increasing concentrations in aquatic ecosystems and their use as supplements in sustainable aquaculture. This study demonstrated that water exposure to fulvic acid at concentrations of 5 mg C/L and 50 mg C/L increased lysozyme and alkaline phosphatase activities in the mucus by approximately 2-fold and 2.5 to 3.2-fold, respectively. Furthermore, exposure to 50 mg C/L resulted in a 77.0% increase in mucosal immunoglobulin concentrations compared to the other groups. Importantly, all mucus samples demonstrated significant antibacterial activity against Yersinia ruckeri, with control mucus reducing bacterial growth by 44.5% and exposure to fulvic acid increasing this effect to 26.3%. Although these modulations show promise for application in aquaculture, alterations of the beneficial microbiota from long-term exposure in natural waters can be expected. Monitoring the rising concentrations of humic substances in natural water bodies is therefore urgently needed. Overall, this study represents the first investigation revealing the ability of humic substances to modulate skin mucosal immunity and the capacity to combat microorganisms.


Assuntos
Benzopiranos , Dieta , Imunidade nas Mucosas , Animais , Ecossistema , Substâncias Húmicas , Aquicultura , Água , Fatores de Risco
13.
Neotrop Entomol ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358646

RESUMO

The growing concern with the decline of pollinators worldwide is centered on honey bees, due to their wide distribution, economic, and ecological importance. This type of concern remained less evident for stingless bees, which are widely distributed in the Neotropics, until recently. Since exposure to agrochemicals has been identified as one of the potential threats to bees, the present systematic review compiled information from toxicological evaluations in stingless bees in Brazil, home to a considerable portion of the existing species. This systematic review was performed considering species, research institutions, scientific journals, metrics, experimental set ups, and agrochemicals. The first article in this topic was published in 2010. Since then, 93 scientific papers were published, which showed that there are few species of stingless bees used for toxicological evaluations and Brazilian institutions lead these evaluations. Only 1.5% of the stingless bees' species that occur in Brazil were assessed through chronic exposure in the larval stage. The Universidade Federal de Viçosa (UFV) is responsible for 37% of the total publications. The main route of exposure was acute, using adults in laboratory conditions. The main group of agrochemicals studied were insecticides, in particular the neonicotinoids. The current results reveal the advances achieved and point out the gaps that still need to be filled considering toxicological evaluations in stingless bees.

14.
Biosens Bioelectron ; 250: 116077, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38308941

RESUMO

Portable, low-cost, and accurate monitoring of hazardous mono-aromatic pollutants, such as phenol or benzene group of compounds in water is a challenging task due to the lack of suitable detectable functional groups and complex matrix of environmental samples. Here, we use a series of protein-based biosensing recognition scaffolds to enable specific detection of several mono-aromatic classes of xenobiotics. The biosensor is tuned to perform in intricate environmental conditions and is interfaced with an in-house manufactured, multi-channel device (AroTrack) capable of direct and sensitive detection of several of these aromatic contaminants, such as phenol, benzene, and 2,3-dimethylphenol (2,3-DMP) in the low ppb range (10-200 ppb). The efficiency of the prototype device was benchmarked in both simulated wastewater and real environmental samples comprising 10 times higher isostructural aromatic pollutants or ions. It was established that AroTrack is reliable for environmental sample testing with a high degree of reproducibility and efficiency comparable to that of modern spectrophotometers (<5 % error). The battery-operated device costs less than $50 to fabricate and this low cost makes it effective to be implemented in rural and low-income settings which suggests immense field deployable potential.


Assuntos
Técnicas Biossensoriais , Poluentes Ambientais , Água , Benzeno , Reprodutibilidade dos Testes , Xenobióticos , Fenóis
15.
Toxicology ; 503: 153751, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354972

RESUMO

Environmental toxicants are chemical substances capable to impair environmental quality and exert adverse effects on humans and other animals. The main routes of exposure to these pollutants are through the respiratory tract, skin, and oral ingestion. When ingested orally, they will encounter trillions of microorganisms that live in a community - the gut microbiota (GM). While pollutants can disrupt the GM balance, GM plays an essential role in the metabolism and bioavailability of these chemical compounds. Under physiological conditions, strategies used by the GM for metabolism and/or excretion of xenobiotics include reductive and hydrolytic transformations, lyase and functional group transfer reactions, and enzyme-mediated functional transformations. Simultaneously, the host performs metabolic processes based mainly on conjugation, oxidation, and hydrolysis reactions. Thus, due to the broad variety of bacterial enzymes present in GM, the repertoire of microbial transformations of chemicals is considered a key component of the machinery involved in the metabolism of pollutants in humans and other mammals. Among pollutants, metals deserve special attention once contamination by metals is a worldwide problem, and their adverse effects can be observed even at very low concentrations due to their toxic properties. In this review, bidirectional interaction between lead, arsenic, cadmium, and mercury and the host organism and its GM will be discussed given the most recent literature, presenting an analysis of the ability of GM to alter the host organism's susceptibility to the toxic effects of heavy metals, as well as evaluating the extent to which interventions targeting the microbiota could be potential initiatives to mitigate the adverse effects resulting from poisoning by heavy metals. This study is the first to highlight the overlap between some of the bacteria found to be altered by metal exposure and the bacteria that also aid the host organism in the metabolism of these metals. This could be a key factor to determine the beneficial species able to minimize the toxicity of metals in future therapeutic approaches.


Assuntos
Arsênio , Poluentes Ambientais , Microbioma Gastrointestinal , Metais Pesados , Humanos , Animais , Metais Pesados/toxicidade , Arsênio/toxicidade , Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Substâncias Perigosas , Mamíferos
16.
Sci Total Environ ; 918: 170498, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38307266

RESUMO

Industrialization and population growth are leading to the production of significant amounts of sewage containing hazardous xenobiotic compounds. These compounds pose a threat to human and animal health, as well as the overall ecosystem. To combat this issue, chemical, physical, and biological techniques have been used to remove these contaminants from water bodies affected by human activity. Biotechnological methods have proven effective in utilizing microorganisms and enzymes, particularly laccases, to address this problem. Laccases possess versatile enzymatic characteristics and have shown promise in degrading different xenobiotic compounds found in municipal, industrial, and medical wastewater. Both free enzymes and crude enzyme extracts have demonstrated success in the biotransformation of these compounds. Despite these advancements, the widespread use of laccases for bioremediation and wastewater treatment faces challenges due to the complex composition, high salt concentration, and extreme pH often present in contaminated media. These factors negatively impact protein stability, recovery, and recycling processes, hindering their large-scale application. These issues can be addressed by focusing on large-scale production, resolving operation problems, and utilizing cutting-edge genetic and protein engineering techniques. Additionally, finding novel sources of laccases, understanding their biochemical properties, enhancing their catalytic activity and thermostability, and improving their production processes are crucial steps towards overcoming these limitations. By doing so, enzyme-based biological degradation processes can be improved, resulting in more efficient removal of xenobiotics from water systems. This review summarizes the latest research on bacterial laccases over the past decade. It covers the advancements in identifying their structures, characterizing their biochemical properties, exploring their modes of action, and discovering their potential applications in the biotransformation and bioremediation of xenobiotic pollutants commonly present in water sources.


Assuntos
Lacase , Água , Animais , Humanos , Lacase/metabolismo , Ecossistema , Xenobióticos , Biotransformação , Biodegradação Ambiental
17.
Environ Sci Pollut Res Int ; 31(11): 17256-17274, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38337121

RESUMO

The xenobiotic 2,4,6-trinitrotoluene (TNT) is a highly persistent environmental contaminant, whose biotransformation by microorganisms has attracted renewed attention. In previous research, we reported the discovery of Pseudomonas sp. TNT3, the first described Antarctic bacterium with the ability to biotransform TNT. Furthermore, through genomic analysis, we identified distinctive features in this isolate associated with the biotransformation of TNT and other xenobiotics. However, the metabolic pathways and genes active during TNT exposure in this bacterium remained unexplored. In the present transcriptomic study, we used RNA-sequencing to investigate gene expression changes in Pseudomonas sp. TNT3 exposed to 100 mg/L of TNT. The results showed differential expression of 194 genes (54 upregulated and 140 downregulated), mostly encoding hypothetical proteins. The most highly upregulated gene (> 1000-fold) encoded an azoreductase enzyme not previously described. Other significantly upregulated genes were associated with (nitro)aromatics detoxification, oxidative, thiol-specific, and nitrosative stress responses, and (nitro)aromatic xenobiotic tolerance via efflux pumps. Most of the downregulated genes were involved in the electron transport chain, pyrroloquinoline quinone (PQQ)-related alcohol oxidation, and motility. These findings highlight a complex cellular response to TNT exposure, with the azoreductase enzyme likely playing a crucial role in TNT biotransformation. Our study provides new insights into the molecular mechanisms of TNT biotransformation and aids in developing effective TNT bioremediation strategies. To the best of our knowledge, this report is the first transcriptomic response analysis of an Antarctic bacterium during TNT biotransformation.


Assuntos
Trinitrotolueno , Trinitrotolueno/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Xenobióticos/metabolismo , Biotransformação , Bactérias/metabolismo , Biodegradação Ambiental , Perfilação da Expressão Gênica
18.
J Hazard Mater ; 465: 133466, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38219583

RESUMO

Plant autotoxicity is considered to be one of the important causes of continuous cropping obstacles in modern agriculture, which accumulates a lot of allelochemicals and xenobiotics and is difficult to solve effectively. To overcome tobacco continuous obstacles, a strain Pigmentiphaga kullae CHJ604 isolated from the environment can effectively degrade these compounds in this study. CHJ604 strain can degrade 11 types of autotoxicity allelochemicals and xenobiotics (1646.22 µg/kg) accumulated in the soil of ten-years continuous cropping of tobacco. The 11 allelochemicals and xenobiotics significantly reduced Germination Percentage (GP), Germination Index (GI), and Mean Germination Time (MGT) of tobacco seeds, and inhibited the development of leaves, stems, and roots. These negative disturbances can be eliminated by CHJ604 strain. The degradation pathways of 11 allelochemicals and xenobiotics were obtained by whole genome sequence and annotation of CHJ604 strain. The heterologous expression of a terephthalate 1,2-dioxygenase can catalyze 4-hydroxybenzoic acid, 4-hydroxy-3-methoxybenzoic acid, 4-hydroxybenzaldehyde, and 4-hydroxy-3-methoxy-benzaldehyde, respectively. The phthalate 4,5-dioxygenase can catalyze phthalic acid, diisobutyl phthalate, and dibutyl phthalate. These two enzymes are conducive to the simultaneous degradation of multiple allelochemicals and xenobiotics by strain CHJ604. This study provides new insights into the biodegradation of autotoxicity allelochemicals and xenobiotics as it is the first to describe a degrading bacterium of 11 types of allelochemicals and xenobiotics and their great potential in improving tobacco continuous obstacles.


Assuntos
Alcaligenaceae , Xenobióticos , Feromônios/metabolismo , Alcaligenaceae/metabolismo , Solo
19.
Environ Res ; 247: 118269, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246293

RESUMO

Investigating the quality of the subway environment, especially regarding antibiotic resistance genes (ARGs) and xenobiotics, conveys ecological and health impacts. In this study, compositions and relations of microorganisms harboring ARGs and xenobiotic degradation and metabolism genes (XDGs) in the Sukhumvit subway station (MRT-SKV) in Bangkok was assessed by analyzing the taxonomic and genetic diversity of the microbiome in the air and on the surfaces of floor and handrail. The major bacteria in the MRT-SKV (including Moraxella, which was abundant in the bioaerosol and handrail samples, and Staphylococcus, which was abundant in the bioaerosol samples) were found to contain both ARGs and XDGs. The co-abundance correlation network revealed notable relationships among bacteria harboring antibiotic resistance genes (ARGs) and xenobiotic degradation genes (XDGs). Significant associations were observed between ARGs linked to glycopeptide and fluoroquinolone resistance and genes associated with benzoate, styrene, and atrazine degradation pathways, as well as between ARGs related to cephamycin, cephalosporin, and MLS resistance and XDGs associated with the cytochrome P450-dependent drug metabolism pathway. These correlations suggested that selective pressure exerted by certain xenobiotics and antibiotics can simultaneously affect both ARGs and XDGs in the environment and should favor correlations and co-survival among ARG- and XDG-containing bacteria in the environments. The correlations may occur via shared mechanisms of resistance to both xenobiotics and antibiotics. Finally, different correlation pairs were seen in different niches (air, handrail, floor) of the subway environment or different geolocations. Thus, the relationship between ARG and XDG pairs most likely depends on the unique characteristics of the niches and on the prominent types of xenobiotics and antibiotics in the subway environment. The results indicated that interactions and connections between microbial communities can impact how they function. These microorganisms can have profound effects on accumulation of xenobiotics and ARGs in the MRT-SKV.


Assuntos
Microbiota , Ferrovias , Antibacterianos/farmacologia , Antibacterianos/análise , Genes Bacterianos , Xenobióticos , Tailândia , Bactérias/genética
20.
Pestic Biochem Physiol ; 198: 105717, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225064

RESUMO

The intranasal (IN) administration route represents a pathway for xenobiotics to reach the brain. The present study aimed to address the long-term consequences of IN administration of a chlorpyrifos (CPF) commercial formulation (fCPF) in mice. For this purpose, adult male CF-1 mice were intranasally administered with fCPF (10 mg/kg/day) three days a week, for 2 and 4 weeks, respectively. Behavioral and biochemical analyses were conducted 3-7, and 7.5 months after the last IN fCPF administration, respectively. Following a 6-month fCPF-free washout period, fur appearance and body injuries scores improved in the fCPF-treated groups. Notably, spatial learning and memory enhancement was observed 4 and 7 months after the last IN fCPF administration. Changes in oxidative stress markers and the activities of enzymes involved in cholinergic and glutamatergic pathways were observed in different brain areas from fCPF-treated mice, still after 7.5 months from fCPF application. Altogether, these neurochemical disturbances could be responsible for the described behavioral observations.


Assuntos
Clorpirifos , Inseticidas , Camundongos , Animais , Clorpirifos/toxicidade , Encéfalo/metabolismo , Comportamento Animal , Estresse Oxidativo , Inseticidas/toxicidade , Inseticidas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...